

Static and Dynamic Charge and Spin Correlations in Layered Manganites

Dimitri N. Argyriou Hahn-Meitner-Institut Berlin, Germany

argyriou@hmi.de

Collaborators

Argonne National Laboratory
 John Mitchell
 Uta Ruett
 Branton Campbell
 Ray Osborn
 Heloisa Nunes-Bordallo

- NIST
 Jeff Lynn
- Hahn Meitner Institut
 Nadir Aliouane
- Forshungzentrum Juelich Werner Schweika

Take Home Message

- Static and dynamic charge and spin correlations are at the center of not only manganite physics but of transition metal oxide science.
 - Resurgence of manganite physics is partially due to better neutron and X-ray scattering techniques that allowed us to find evidence for lattice/spin polarons.
- Time-of-flight techniques offer unique opportunities to probe these materials.
 - Complexity requires the survey of large volumes of reciprocal space and ability to deal adeqiately with dynamical effects.

Layered Manganites La_{2-2x}Sr_{1+x}Mn₂O₇

Polaron Scattering in Manganites

Orbital and Charge Ordering in Manganites

Charge and Orbital Ordering in LaSr₂Mn₂O₇

Layered Manganites La_{2-2x}Sr_{1+x}Mn₂O₇

Charge and Orbital Correlations in FM La_{1.2}Sr_{1.8}Mn₂O₇

CE-Correlations in $La_{1.2}Sr_{1.8}Mn_2O_7$ (x=0.4)

Dynamic Polaron Correlations

Polaron-Correlations in La_{1.2}Sr_{1.8}Mn₂O₇

110 KV

Polaronic Liquid to Glass Transition

- T>T*
 - Dynamic CE-correlations
 - Quasielastic (QE) width decreases linearly with T
- T_C<T<T*
 - CE coherence length does not diverge
 - varies from 10-20Å
 - CE-correlations freeze
 - Elastic scattering increases below T*
 - QE scattering decreases below T*
 - QE width is ~constant (non-zero)
 - Some dynamic CE-correlations are present
- T<T_C
 - In metallic state elastic and dynamic polaroncorrelations are not observe (no electron-phonon coupling)

Argyriou et al. PRL 89,036401 (2002).

Frustration in Manganites

- In geometrical frustrated systems,
 - Critical dynamics are 2nd order-like for T>Tg.
 - Co-existence of both static and dynamic correlations.
 - At T_g non-divergent order parameter.

What we are actually measuring? Dynamic CE correlations

- Above T* quasielastic scattering indicates that CE-type correlations have a finite lifetime.
 - No evidence for diffusion of CE-type correlations.

Dynamic L-Correlations?

What we are actually measuring? Dynamic Lattice Relaxation

 Quasielastic Huang scattering indicates a dynamic lattice fluctuations associated with hoping e_q charges.

DNS, TOF mode FZ-Jüelich

Magnetic Rods in La_{1.2}Sr_{1.8}Mn₂O₇

Osborn et al. PRL 81,3964 (1998).

- Energy integrated scans along I show modulations in the magnetic diffuse scattering.
- The variation of intensity is modeled by spin-canting between MnO₂ sheets.
- Indicative of the competition between super- and double exchange.

 Osborn et al. PRL 81,3964 (1998).

Some Lessons I

- Short range correlations are key to the physics of many materials.
 - Needs for optimized diffuse scattering instrumentation
 - Low background
 - High efficiency detectors
 - Large reciprocal space coverage
 - CCD for X-rays
 - TOF instruments for neutrons
 - Good Q resolution
 - X-rays better than neutrons
 - Energy discrimination
 - Very important background/static correlation function
 - For total scattering one needs to be aware of what is measured

Some Lessons II

- The time scale of correlations is very important and some effort should be made to probe it in an experiment.
 - X-ray scattering provides time averaged information (integration window ~1eV).
 - Energy integrated measurements provide important insights, but not the whole picture.
 - Can not see a freezing transition.
 - For neutron scattering, analyzers can be used for inelastic scattering rejection to provide the static correlation function.
 - TAS is not an efficient way to measure diffuse scattering
 - Need arrays analyzer/detectors
 - Possibilities with statistical choppers....
 - Alternatively, measure everything, sort it out later, using direct geometry time of flight techniques.

Diffuse Scattering In Rectors E2 at Hahn-Meitner Institut

Polaron Scattering in La_{1.2}Sr_{1.8}Mn₂O₇ Using SCD at LANSCE

MiDaS for Long Wavelength Target Station at SNS

- Decoupled Liquid Methane Moderator
- Effective rep rate 10Hz
- Dd/d=0.2 % at backscattering.
- Single crystal and powder samples

TOF/Monochromator Combination

Nuclear and magnetic diffuse scattering

Conclusions

- In La_{1.2}Sr_{1.8}Mn₂O₇, we find evidence of a glass transition at T*.
 - T* is the temperature were polaronic correlations freeze
 - Fundamental Temperature Scale in CMR manganites.
- The insulating state between T_c<T<T* in this manganite arises from a frozen local scale charge and orbitaly ordered state.
- Diffuse scattering has been critical in uncovering the physics of manganites.
- Quasileastic scattering gives unique insight into polaron dynamics.

Conclusions

- Instrumentation
 - X-ray and neutron diffuse scattering are complementary.
 - Should be used together whenever possible.
 - Neutrons instrumentation should focus on the better energy resolution that is achievable compared to X-rays scattering.
 - At SNS one can go beyond just measuring the static correlation function.
 - Monochromator/pulsed beam combination
 - Can be quite competitive compared to correlation shopper
 - Can bridge the gap at low energies between a diffractometer and other TOF spectrometers (like MAPS/MARI).